Characterizing Hypervelocity Impact (HVI)-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

نویسندگان

  • Menglong Liu
  • Kai Wang
  • Cliff J. Lissenden
  • Qiang Wang
  • Qingming Zhang
  • Renrong Long
  • Zhongqing Su
  • Fangsen Cui
چکیده

Hypervelocity impact (HVI), ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region), a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation) are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation), which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and numerical study of delamination detection in a WGF/epoxy composite plate using ultrasonic guided waves and signal processing tools

Reliable damage detection is one of the most critical tasks in composite plate structures. Ultrasonic guided waves are acknowledged as an effective way of structural health mo...

متن کامل

Monitoring of corrosion damage using high-frequency guided ultrasonic waves

Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in diffic...

متن کامل

Ultrasonic guided waves reflection from simple dent in pipe for defect rate estimation and parameters determination of axisymmetric wave generation source

In this paper, the reflection of ultrasonic guided waves from simple dent in pipes has been investigated using finite element method and the relationship between reflection coefficient of these waves and deformation rate has been determined. Also, the effect of the parameters of wave generation source on the generated wave field has been investigated using normal modes expansion method. At firs...

متن کامل

Discrete Particle Method for Simulating Hypervelocity Impact Phenomena

In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms-1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we...

متن کامل

Guided Ultrasonic Waves for Impact Damage Detection in Composite Panels

Carbon fiber laminate composites, consisting of layers of polymer matrix reinforced with high strength carbon fibers, are increasingly employed for aerospace structures. They offer advantages for aerospace applications, e.g., good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017